论文标题
SRF理论对下一代粒子加速器的挑战和机会
Challenges and opportunities of srf theory for next generation particle accelerators
论文作者
论文摘要
我们建议一个程序,以在强电磁场下使用非平衡超导性的现代理论建立SRF腔的理论性能极限。这些理论将用于计算SRF腔的优点的主要参数:质量因子Q及其对场幅度,温度和频率的依赖性,这将使我们能够了解SRF腔功能性能可以从ART的当前状态中推动多远。鉴于质量因子取决于在非常不同的长度尺度上运行的多种机制,我们将解决非线性表面抗性的相互联系问题,被困在空腔中的涡流的RF损失,材料缺陷和表面地形的效果以及通过表面纳米结构,磁场管理,磁场管理和多重层增强SRF性能的机会。我们建议理论SRF研究的以下方向来解决提高下一代粒子加速器性能的目标:1。建立Q极限,非线性表面抗性的机制以及在强RF场下非平衡超导体中的残留抗性。 2。建立SRF分解场极限,动态过热场及其对杂质的频率,温度和浓度的依赖性。 3。由于SRF腔中强RF Meissner电流驱动的超快涡流的损失和极端动态。 4。由于空腔表面,多层和杂质管理的表面纳米结构而引起的SRF性能的优化。
We suggest a program to establish theoretical performance limits of srf cavities using modern theories of nonequilibrium superconductivity under a strong electromagnetic field. These theories will be used to calculate the main parameter of merit of srf cavities: the quality factor Q and its dependencies on the field amplitude, temperature and frequency, which would allow us to understand how far the srf cavity performance could be pushed from the current state of the art. Given that the quality factor is determined by multiple mechanisms operating on very different length scales, we will address the interconnected problems of a nonlinear surface resistance, rf losses of vortices trapped in the cavity, the effect of materials defects and surface topography, and the opportunities to boost the srf performance by surface nano-structuring, impurity management and multilayers. We suggest the following directions of theoretical srf research to address the goals of boosting the performance of the next generation particle accelerators: 1. Establishing the Q limit, mechanisms of nonlinear surface resistance and the residual resistance in a nonequilibrium superconductor under a strong RF field. 2. Establishing the srf breakdown field limit, dynamic superheating field and its dependencies on frequency, temperature and concentration of impurities. 3. Losses due to trapped vortices and extreme dynamics of ultrafast vortices driven by strong rf Meissner currents in srf cavities. 4. Optimization of srf performance due to surface nanostructuring of the cavity surface, multilayers and impurity management.