论文标题

多语言蒙版语言模型的跨语性能力:语言结构的研究

Cross-Lingual Ability of Multilingual Masked Language Models: A Study of Language Structure

论文作者

Chai, Yuan, Liang, Yaobo, Duan, Nan

论文摘要

多语言预训练的语言模型,例如Mbert和XLM-R,表现出令人印象深刻的跨语性能力。令人惊讶的是,他们俩都使用多语言蒙版语言模型(MLM),而没有任何跨语言监督或对齐数据。尽管取得了令人鼓舞的结果,但我们仍然缺乏清楚的了解,为什么跨语义能力从多语言传销中出现。在我们的工作中,我们认为跨语言能力来自语言之间的共同点。具体而言,我们研究了三种语言属性:组成顺序,组成和单词共发生。首先,我们通过用源语言修改属性来创建人造语言。然后,我们通过改变目标语言的跨语言转移结果来研究修改性属性的贡献。我们对六种语言和两项跨语性NLP任务进行实验(文本需要,句子检索)。我们的主要结论是,组成顺序和单词共发生的贡献是有限的,而该组成对于跨语言转移的成功更为至关重要。

Multilingual pre-trained language models, such as mBERT and XLM-R, have shown impressive cross-lingual ability. Surprisingly, both of them use multilingual masked language model (MLM) without any cross-lingual supervision or aligned data. Despite the encouraging results, we still lack a clear understanding of why cross-lingual ability could emerge from multilingual MLM. In our work, we argue that cross-language ability comes from the commonality between languages. Specifically, we study three language properties: constituent order, composition and word co-occurrence. First, we create an artificial language by modifying property in source language. Then we study the contribution of modified property through the change of cross-language transfer results on target language. We conduct experiments on six languages and two cross-lingual NLP tasks (textual entailment, sentence retrieval). Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源