论文标题

Posepipe:开源人类姿势估计临床研究的管道

PosePipe: Open-Source Human Pose Estimation Pipeline for Clinical Research

论文作者

Cotton, R. James

论文摘要

机器学习算法的人姿势估计取得了重大进展,这可能在康复和运动科学方面具有巨大的价值。但是,常规使用这些工具进行临床实践和翻译研究仍然存在一些挑战,包括:1)高技术障碍,2)算法的迅速发展空间,3)挑战算法相互依存的挑战,以及4)这些组件之间的复杂数据管理要求。为了减轻这些障碍,我们开发了人类的姿势估计管道,该管道有助于在临床背景下获取的数据上运行最新的算法。我们的系统允许运行几类算法的不同实现,并轻松处理其相互依赖性。这些算法类别包括主题识别和跟踪,2D键盘检测,3D关节位置估计以及估计身体模型的姿势。该系统使用数据库来管理每个阶段的视频,中间分析和数据进行计算。它还提供了用于数据可视化的工具,包括生成视频叠加层,这些视频覆盖也掩盖了面孔以增强隐私。我们在这项工作中的目标不是培训新算法,而是促进使用临床和翻译研究的最先进的人类姿势估计算法。我们表明,该工具有助于分析从步态实验室分析到诊所和治疗访问到社区的大量人类运动视频。在康复环境中应用于临床人群时,我们还强调了这些算法的局限性。

There has been significant progress in machine learning algorithms for human pose estimation that may provide immense value in rehabilitation and movement sciences. However, there remain several challenges to routine use of these tools for clinical practice and translational research, including: 1) high technical barrier to entry, 2) rapidly evolving space of algorithms, 3) challenging algorithmic interdependencies, and 4) complex data management requirements between these components. To mitigate these barriers, we developed a human pose estimation pipeline that facilitates running state-of-the-art algorithms on data acquired in clinical context. Our system allows for running different implementations of several classes of algorithms and handles their interdependencies easily. These algorithm classes include subject identification and tracking, 2D keypoint detection, 3D joint location estimation, and estimating the pose of body models. The system uses a database to manage videos, intermediate analyses, and data for computations at each stage. It also provides tools for data visualization, including generating video overlays that also obscure faces to enhance privacy. Our goal in this work is not to train new algorithms, but to advance the use of cutting-edge human pose estimation algorithms for clinical and translation research. We show that this tool facilitates analyzing large numbers of videos of human movement ranging from gait laboratories analyses, to clinic and therapy visits, to people in the community. We also highlight limitations of these algorithms when applied to clinical populations in a rehabilitation setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源