论文标题

迈向超级分辨率的真实细节修复:基准和质量指标

Towards True Detail Restoration for Super-Resolution: A Benchmark and a Quality Metric

论文作者

Lyapustin, Eugene, Kirillova, Anastasia, Meshchaninov, Viacheslav, Zimin, Evgeney, Karetin, Nikolai, Vatolin, Dmitriy

论文摘要

近年来,超分辨率(SR)已成为广泛研究的主题。 SR方法可以改善整体图像和视频质量,并为进一步的内容分析创造新的可能性。但是,尽管潜在失去了上下文的准确性,但SR主流主要集中于增加所得图像的自然性。这种方法可能会产生不正确的数字,性格,面部或其他结构对象,即使它们产生良好的视觉质量。在手动和自动检测和识别对象时,不正确的细节修复可能会导致错误。为了分析图像和视频SR模型的详细信息功能,我们根据自己的视频数据集开发了一个基准,该数据集包含SR模型通常无法正确恢复的复杂模式。我们使用基准测试了32个SR模型,并比较了它们保留场景环境的能力。我们还对恢复的细节进行了众包比较,并开发了一个客观评估指标,该指标通过与该任务的主观分数相关性来优于其他质量指标。总之,我们对基准结果进行了深入的分析,该结果为将来的基于SR的工作提供了见解。

Super-resolution (SR) has become a widely researched topic in recent years. SR methods can improve overall image and video quality and create new possibilities for further content analysis. But the SR mainstream focuses primarily on increasing the naturalness of the resulting image despite potentially losing context accuracy. Such methods may produce an incorrect digit, character, face, or other structural object even though they otherwise yield good visual quality. Incorrect detail restoration can cause errors when detecting and identifying objects both manually and automatically. To analyze the detail-restoration capabilities of image and video SR models, we developed a benchmark based on our own video dataset, which contains complex patterns that SR models generally fail to correctly restore. We assessed 32 recent SR models using our benchmark and compared their ability to preserve scene context. We also conducted a crowd-sourced comparison of restored details and developed an objective assessment metric that outperforms other quality metrics by correlation with subjective scores for this task. In conclusion, we provide a deep analysis of benchmark results that yields insights for future SR-based work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源