论文标题

基于对称的人工和生物通用智能的表示

Symmetry-Based Representations for Artificial and Biological General Intelligence

论文作者

Higgins, Irina, Racanière, Sébastien, Rezende, Danilo

论文摘要

生物智能在许多不同的情况下通过数据有效,可转移和可转移的技能获取在许多不同情况下产生复杂行为的能力是显着的。据信,学习“良好”的感官表示对于实现这一点很重要,但是关于良好代表的外观几乎没有共识。在这篇评论文章中,我们将争辩说,对称转换是一个基本原则,可以指导我们搜索良好代表的搜索。存在影响系统某些方面而不是其他方面的转换(对称性),而它们与其他方面的关系以及它们与保守数量的关系已成为现代物理学的核心,从而导致了更加统一的理论框架,甚至可以预测新粒子的存在。最近,对称性也开始在机器学习方面获得突出性,从而产生了更多的数据有效且可概括的算法,这些算法可以模仿生物智能产生的某些复杂行为。最后,在神经科学中开始出现对称转化对大脑表示学习的重要性的首次演示。综上所述,对称性对这些学科带来的压倒性积极作用表明,它们可能是决定宇宙结构的重要一般框架,限制了自然任务的性质,因此塑造了生物学和人工智能。

Biological intelligence is remarkable in its ability to produce complex behaviour in many diverse situations through data efficient, generalisable and transferable skill acquisition. It is believed that learning "good" sensory representations is important for enabling this, however there is little agreement as to what a good representation should look like. In this review article we are going to argue that symmetry transformations are a fundamental principle that can guide our search for what makes a good representation. The idea that there exist transformations (symmetries) that affect some aspects of the system but not others, and their relationship to conserved quantities has become central in modern physics, resulting in a more unified theoretical framework and even ability to predict the existence of new particles. Recently, symmetries have started to gain prominence in machine learning too, resulting in more data efficient and generalisable algorithms that can mimic some of the complex behaviours produced by biological intelligence. Finally, first demonstrations of the importance of symmetry transformations for representation learning in the brain are starting to arise in neuroscience. Taken together, the overwhelming positive effect that symmetries bring to these disciplines suggest that they may be an important general framework that determines the structure of the universe, constrains the nature of natural tasks and consequently shapes both biological and artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源