论文标题
杂交股:惯性aid单眼捕获具有挑战性的人类运动
HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions
论文作者
论文摘要
单眼3D运动捕获(MOCAP)对许多应用有益。但是,单个相机的使用通常无法处理不同身体部位的遮挡,因此仅限于捕获相对简单的动作。我们提出了一种称为HybridCap的轻型,混合MOCAP技术,该技术在学习和优化框架中仅使用4个惯性测量单元(IMU)增强相机。我们首先采用基于合作封闭的复发单元(GRU)块的弱监督和分层运动推理模块,该模块用作肢体,身体和根跟踪器以及一个逆运动学求解器。我们的网络有效地缩小了合理动作的搜索空间,通过粗到精细的姿势估计,并设法以高效率来应对具有挑战性的运动。我们进一步开发了一种混合优化方案,该方案结合了惯性反馈和视觉提示,以提高跟踪精度。在各种数据集上进行的广泛实验表明,混合场可以强大地处理从健身动作到拉丁舞的具有挑战性的运动。它还以最先进的精度可实现高达60 fps的实时性能。
Monocular 3D motion capture (mocap) is beneficial to many applications. The use of a single camera, however, often fails to handle occlusions of different body parts and hence it is limited to capture relatively simple movements. We present a light-weight, hybrid mocap technique called HybridCap that augments the camera with only 4 Inertial Measurement Units (IMUs) in a learning-and-optimization framework. We first employ a weakly-supervised and hierarchical motion inference module based on cooperative Gated Recurrent Unit (GRU) blocks that serve as limb, body and root trackers as well as an inverse kinematics solver. Our network effectively narrows the search space of plausible motions via coarse-to-fine pose estimation and manages to tackle challenging movements with high efficiency. We further develop a hybrid optimization scheme that combines inertial feedback and visual cues to improve tracking accuracy. Extensive experiments on various datasets demonstrate HybridCap can robustly handle challenging movements ranging from fitness actions to Latin dance. It also achieves real-time performance up to 60 fps with state-of-the-art accuracy.