论文标题
基于分解的混合合奏CNN框架,用于驾驶员疲劳识别
A Decomposition-Based Hybrid Ensemble CNN Framework for Driver Fatigue Recognition
论文作者
论文摘要
脑电图(EEG)在驾驶员疲劳监测系统中变得越来越流行。已经尝试了几种分解方法来分析复杂,非线性和非平稳性的EEG信号,并改善不同应用中的EEG解码性能。但是,从不同分解的组件中提取更多可区分的特征以实现驾驶员疲劳识别仍然是一项挑战。在这项工作中,我们提出了一种基于分解的新型混合集合卷积神经网络(CNN)框架,以增强解码EEG信号的能力。采用四种分解方法将EEG信号分解为不同复杂性的组成部分。该框架中的CNN不是手工艺功能,而是直接从分解组件中学习。另外,采用特定于组件的批准层来降低主题可变性。此外,我们采用两种集合模式来整合所有CNN的输出,全面利用分解组件的各种信息。在具有挑战性的跨主题驾驶员疲劳识别任务上,该框架下的模型都表现出优越的性能。具体而言,进一步比较了不同分解方法和集合模式的性能。结果表明,在比较方法中,基于离散小波转换的集合CNN达到了最高的平均分类精度为83.48%。所提出的框架可以扩展到任何CNN体系结构,并应用于与EEG相关的任何任务,从而开放了从复杂的EEG数据中提取更有益特征的可能性。
Electroencephalogram (EEG) has become increasingly popular in driver fatigue monitoring systems. Several decomposition methods have been attempted to analyze the EEG signals that are complex, nonlinear and non-stationary and improve the EEG decoding performance in different applications. However, it remains challenging to extract more distinguishable features from different decomposed components for driver fatigue recognition. In this work, we propose a novel decomposition-based hybrid ensemble convolutional neural network (CNN) framework to enhance the capability of decoding EEG signals. Four decomposition methods are employed to disassemble the EEG signals into components of different complexity. Instead of handcraft features, the CNNs in this framework directly learn from the decomposed components. In addition, a component-specific batch normalization layer is employed to reduce subject variability. Moreover, we employ two ensemble modes to integrate the outputs of all CNNs, comprehensively exploiting the diverse information of the decomposed components. Against the challenging cross-subject driver fatigue recognition task, the models under the framework all showed superior performance to the strong baselines. Specifically, the performance of different decomposition methods and ensemble modes was further compared. The results indicated that discrete wavelet transform-based ensemble CNN achieved the highest average classification accuracy of 83.48% among the compared methods. The proposed framework can be extended to any CNN architecture and be applied to any EEG-related tasks, opening the possibility of extracting more beneficial features from complex EEG data.