论文标题

广泛深入领域中AGN时间序列数据的LSST节奏策略评估

LSST Cadence Strategy Evaluations for AGN Time-series Data in Wide-Fast-Deep Field

论文作者

Sheng, Xinyue, Ross, Nicholas, Nicholl, Matt

论文摘要

机器学习是重建时间序列现象的一种有前途的工具,例如从稀疏采样的数据中,例如活性银河核(AGN)的变异性。在这里,我们使用AGN可变性的三个连续自动回归平均值(CARMA)表示 - 阻尼的随机步行(DRW)和(过度/低下)阻尼的谐波振荡器(DHO) - 模拟10年的AGN光曲线,因为它们将在即将到来的Vera Rubin temervoration Presservatory nevervoration Presservatory nevervoration Presservatory Somestenty(ls)中(lSST)进行调查(lSST),并生成了这些工具,并生成了这些工具。我们调查了五种提议的节奏策略对LSST主要广泛深(WFD)调查的影响的影响。我们首次在天文学中申请一种新型随机复发神经网络(SRNN)算法,以从模拟的LSST数据重建输入光曲线,并提供了一个度量标准来评估SRNN如何帮助恢复基本的CARMA参数。我们发现,光曲线重建对观测季节和提议的节奏之间的间隙持续时间最敏感,那些会改变过滤器之间平衡的差距,或避免在{g} band band的表现更好。总体而言,SRNN是重建密集采样的AGN光曲线并恢复DRW过程(SF $ _ \ infty $)的长期结构函数的一种有希望的方法。但是,我们发现,对于所有节奏,Carma/SRNN模型都难以恢复与调查观察差距很长的差距,因此恢复了去相关时间尺度($τ$)。这可能表明将LSST WFD数据用于AGN变异科学的主要局限性。

Machine learning is a promising tool to reconstruct time-series phenomena, such as variability of active galactic nuclei (AGN), from sparsely-sampled data. Here we use three Continuous Auto-Regressive Moving Average (CARMA) representations of AGN variability -- the Damped Random Walk (DRW) and (over/under-)Damped Harmonic Oscillator (DHO) -- to simulate 10-year AGN light curves as they would appear in the upcoming Vera Rubin Observatory Legacy Survey of Space and Time (LSST), and provide a public tool to generate these for any survey cadence. We investigate the impact on AGN science of five proposed cadence strategies for LSST's primary Wide-Fast-Deep (WFD) survey. We apply for the first time in astronomy a novel Stochastic Recurrent Neural Network (SRNN) algorithm to reconstruct input light curves from the simulated LSST data, and provide a metric to evaluate how well SRNN can help recover the underlying CARMA parameters. We find that the light curve reconstruction is most sensitive to the duration of gaps between observing season, and that of the proposed cadences, those that change the balance between filters, or avoid having long gaps in the {g}-band perform better. Overall, SRNN is a promising means to reconstruct densely sampled AGN light curves and recover the long-term Structure Function of the DRW process (SF$_\infty$) reasonably well. However, we find that for all cadences, CARMA/SRNN models struggle to recover the decorrelation timescale ($τ$) due to the long gaps in survey observations. This may indicate a major limitation in using LSST WFD data for AGN variability science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源