论文标题

纠缠固定解决方案:用于材料财产预测的张量网络的机器学习

Entangling Solid Solutions: Machine Learning of Tensor Networks for Materials Property Prediction

论文作者

Sommer, David E., Dunham, Scott T.

论文摘要

机器学习技术在固态和分子材料特性预测中的应用方面的进展极大地促进了最先进的特征表示和新颖的深度学习体系结构。已经证明,基于平滑原子密度的扩展的一大批原子结构表示与抽象的多体希尔伯特空间中基集的特定选择相对应。同时,量子网络结构(通常是量子多体物理学和量子信息的权限)已成功应用于计算机视觉和自然语言处理中的监督和无监督的学习任务。在这项工作中,我们认为基于张量的网络的体系结构非常适合原子结构的希尔伯特空间表示的机器学习。这在涉及金属和半导体合金的密度功能理论计算的广泛可用数据集的监督学习任务上证明了这一点。特别是,我们表明某些标准张量网络拓扑甚至在小型培训数据集上也表现出强大的概括性,同时又具有参数效率。我们将这种普遍性与受过训练的张量网络中复杂的纠缠的存在联系起来。我们还讨论了通过广义结构内核和相关策略的联系,以压缩大型输入特征空间。

Progress in the application of machine learning techniques to the prediction of solid-state and molecular materials properties has been greatly facilitated by the development state-of-the-art feature representations and novel deep learning architectures. A large class of atomic structure representations based on expansions of smoothed atomic densities have been shown to correspond to specific choices of basis sets in an abstract many-body Hilbert space. Concurrently, tensor network structures, conventionally the purview of quantum many-body physics and quantum information, have been successfully applied in supervised and unsupervised learning tasks in computer vision and natural language processing. In this work, we argue that architectures based on tensor networks are well-suited to machine learning on Hilbert-space representations of atomic structures. This is demonstrated on supervised learning tasks involving widely available datasets of density functional theory calculations of metal and semiconductor alloys. In particular, we show that certain standard tensor network topologies exhibit strong generalizability even on small training datasets while being parametrically efficient. We further relate this generalizability to the presence of complex entanglement in the trained tensor networks. We also discuss connections to learning with generalized structural kernels and related strategies for compressing large input feature spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源