论文标题

半全球田地的赫尔米利亚空间的局部全球原则

Local-global principles for hermitian spaces over semi-global fields

论文作者

Guhan, Jayanth

论文摘要

让$ k $成为一个完整的离散字段,带有残基字段$ k $和$ f $ the曲线超过$ k $的功能场。令$ a \ in {} _2br(f)$为中央简单代数,任何种类的划分$σ$,$ f_0 = f^σ$。令$ h $为$(a,σ)$和$ g = su(a,σ,h)$的Hermitian空间,如果$σ$是第一类,而$ g = u(a,σ,h)$如果$σ$是第二类。假设$ \ text {char}(k)\ neq 2 $和ind $(a)\ leq 4 $。然后,我们证明,超过$ f_0 $ $ g $ $ g $ $ g $ $ f_0 $的投影性均匀空间满足了$ f $的离散估值的当地全球原则。

Let $K$ be a complete discrete valued field with residue field $k$ and $F$ the function field of a curve over $K$. Let $A \in {}_2Br(F)$ be a central simple algebra with an involution $σ$ of any kind and $F_0 =F^σ$. Let $h$ be an hermitian space over $(A, σ)$ and $G = SU(A, σ, h)$ if $σ$ is of first kind and $G = U(A, σ, h)$ if $σ$ is of second kind. Suppose that $\text{char}(k) \neq 2$ and ind$(A)\leq 4$. Then we prove that projective homogeneous spaces under $G$ over $F_0$ satisfy a local-global principle for rational points with respect to discrete valuations of $F$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源