论文标题
在鳍片歧管上具有恒定平均曲率的高空曲面
Hypersurfaces with Constant Mean Curvatures on Finsler manifolds
论文作者
论文摘要
在本文中,我们通过使用体积保留变化给出了鳍片歧管中恒定平均曲率的高空曲面的几何含义。然后,我们通过同型导航给出了子曼群的主曲线之间的对应关系,这意味着子策略的某些几何特性是相同的。最后,我们推断出Heintze-Karcher型不平等,并在特殊的Finsler空间中证明了Alexandrov型定理。
In this paper, we give the geometric meaning of hypersurfaces with constant mean curvature in a Finsler manifold by using volume preserving variation. Then we give the correspondence between principal curvatures of submanifolds by a homothetic navigation, which means that some geometric properties of submanifolds are the same. Finally, we deduce a Heintze-Karcher type inequality and prove an Alexandrov type theorem in special Finsler spaces.