论文标题

真正:重新考虑3D面部重建的评估

REALY: Rethinking the Evaluation of 3D Face Reconstruction

论文作者

Chai, Zenghao, Zhang, Haoxian, Ren, Jing, Kang, Di, Xu, Zhengzhuo, Zhe, Xuefei, Yuan, Chun, Bao, Linchao

论文摘要

3D面重建结果的评估通常取决于估计的3D模型和地面真相扫描之间的刚性形状比对。我们观察到,将两个形状与不同的参考点进行排列可以在很大程度上影响评估结果。这构成了精确诊断和改善3D面部重建方法的困难。在本文中,我们提出了一种新的评估方法,并采用了新的基准测试,包括100张全球对齐的面部扫描,具有准确的面部关键点,高质量的区域口罩和拓扑一致的网格。我们的方法执行区域形状比对,并导致计算形状误差期间更准确,双向对应。细粒度,区域评估结果为我们提供了有关最先进的3D面部重建方法表现的详细理解。例如,我们对基于单图像的重建方法的实验表明,DECA在鼻子区域表现最好,而Ganfit在脸颊区域的表现更好。此外,使用与我们构建的相同过程以对齐和重新构造几个3D面部数据集的新型和高质量的3DMM基础HIFI3D ++。我们将在https://realy3dface.com上发布真正的HIFI3D ++以及我们的新评估管道。

The evaluation of 3D face reconstruction results typically relies on a rigid shape alignment between the estimated 3D model and the ground-truth scan. We observe that aligning two shapes with different reference points can largely affect the evaluation results. This poses difficulties for precisely diagnosing and improving a 3D face reconstruction method. In this paper, we propose a novel evaluation approach with a new benchmark REALY, consists of 100 globally aligned face scans with accurate facial keypoints, high-quality region masks, and topology-consistent meshes. Our approach performs region-wise shape alignment and leads to more accurate, bidirectional correspondences during computing the shape errors. The fine-grained, region-wise evaluation results provide us detailed understandings about the performance of state-of-the-art 3D face reconstruction methods. For example, our experiments on single-image based reconstruction methods reveal that DECA performs the best on nose regions, while GANFit performs better on cheek regions. Besides, a new and high-quality 3DMM basis, HIFI3D++, is further derived using the same procedure as we construct REALY to align and retopologize several 3D face datasets. We will release REALY, HIFI3D++, and our new evaluation pipeline at https://realy3dface.com.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源