论文标题
部分可观测时空混沌系统的无模型预测
Approximation of human flow in urban areas by a network of electric circuits : Potential fields and fluctuation-dissipation relations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Owing to the big data the extension of physical laws on nonmaterial has seen numerous successes, and human mobility is one of the scientific frontier topics. Recent GPS technology has made it possible to trace detailed trajectories of millions of people, macroscopic approaches such as the gravity law for human flow between cities and microscopic approaches of individual origin-destination distributions are attracting much attention. However, we need a more general basic model with wide applicability to realize traffic forecasting and urban planning of metropolis fully utilizing the GPS data. Here, based on a novel idea of treating moving people as charged particles, we introduce a sophisticated method to map macroscopic human flows into currents on an imaginary electric circuit defined over a metropolitan area. Conductance is found to be nearly proportional to the maximum current in each location and synchronized human flows in the morning and evening are well described by the temporal changes of electric potential. Surprisingly, the famous fluctuation dissipation theorem holds, namely, the variances of currents are proportional to the conductivities akin to an ordinary material. Especially during the pandemic, such a tool may offer an invaluable insight for policy-making in managing human flows.