论文标题

限制了陶伯斯(Taubes)塞伯格(Seiberg)方程的解决方案序列的措施和能量增长

Limiting measures and energy growth for sequences of solutions to Taubes's Seiberg-Witten equations

论文作者

Enciso, Alberto, Peralta-Salas, Daniel, de Lizaur, Francisco Torres

论文摘要

我们考虑解决方案的序列$(ψ_n,a_n)_ {n = 1}^\ infty $ to taubes修改的seiberg-witten方程,与3个manifold上的固定音量呈现矢量field $ x $相关,并对应于任意大的强度参数$ r_n \ r_n \ f \ f \ felty $。在Taubes的工作中,这些解决方案的渐近行为与$ x $的动态有关。我们考虑了一个相当未开发的解决方案序列的情况,这些解决方案的序列不均匀地限制为$ n \ to \ infty $。我们的第一个主要结果表明,当能量增长的速度比$ r_n^{1/2} $更慢时,解决方案的限制节点集会收集到矢量字段$ x $的不变集。我们使用的主要工具是解决方案的新型最大原理,其关键属性在无限能量案例中仍然有效。作为副产品,在通常具有有界能量的溶液序列的情况下,我们获得了陶伯斯对周期性轨道存在的新的,更直接的证明,而陶伯的结果不涉及局部分析或涡流方程。我们的第二个主要结果证明,与在有限的能量案例中发生的情况相反,当能量无限时,在修改后的Seiberg-inten方程中没有局部限制限制措施。此外,我们获得了有关限制度量支持的维度(通过$ d $ - 福罗斯曼属性表达的)以及我们构建的局部解决方案序列的能量生长的联系。

We consider sequences of solutions $(ψ_n,A_n)_{n=1}^\infty$ to Taubes's modified Seiberg-Witten equations, associated with a fixed volume-preserving vector field $X$ on a 3-manifold and corresponding to arbitrarily large values of the strength parameter $r_n \to \infty$. In Taubes's work, the asymptotic behavior of these solutions is related to the dynamics of $X$. We consider the rather unexplored case of sequences of solutions whose energy is not uniformly bounded as $n\to\infty$. Our first main result shows that when the energy grows more slowly than $r_n^{1/2}$, the limiting nodal set of the solutions converges to an invariant set of the vector field $X$. The main tool we use is a novel maximum principle for the solutions with the key property that it remains valid in the unbounded energy case. As a byproduct, in the usual case of sequences of solutions with bounded energy, we obtain a new, more straightforward proof of Taubes's result on the existence of periodic orbits that does not involve a local analysis or the vortex equations. Our second main result proves that, contrary to what happens in the bounded energy case, when the energy is unbounded there are no local restrictions to the limiting measures that may arise in the modified Seiberg-Witten equations. Furthermore, we obtain a connection about the dimension of the support of the limiting measure (as expressed through a $d$-Frostman property) and the energy growth of the sequence of local solutions we construct.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源