论文标题
主动和被动保护软皮对人类机器人协作中碰撞力的影响
Effect of Active and Passive Protective Soft Skins on Collision Forces in Human-robot Collaboration
论文作者
论文摘要
软电子皮是将工业操纵器变成协作机器人的手段之一。对于已经适合物理人物合作的操纵器,软皮可以使它们更安全。在这项工作中,我们研究了在存在或不存在工业保护性皮肤(Airskin)的情况下,研究了两个合作操作器(UR10E和KUKA LBR IIWA)和一个经典的工业操纵器(KUKA CYBERTECH)的后影响行为。此外,我们分离了被动填充的影响以及传感器对机器人反应的主动贡献。我们总共提出了2250次碰撞测量,并研究了影响力,接触持续时间,夹紧力和冲动。该数据集公开可用。我们总结了结果如下。对于短暂的碰撞,被动皮肤特性降低了撞击力约40%。在准静态接触期间,不能与协作机器人的碰撞检测和反应中隔离皮肤覆盖物的效果 - 活跃或被动。发现了由主动保护皮肤触发的停止类别的重要作用。我们从系统地比较了ISO/TS 15066处方的不同设置和经验确定的安全速度。在某些情况下,直至ISO/TS 15066处方速度的四倍,可以遵守影响力的限制,因此被认为是安全的。我们提出了有关影响力和允许速度的公式的扩展,该公式考虑了保护盖的刚度和可压缩厚度,从而更好地预测了碰撞力的预测。同时,这项工作强调了对原位测量的需求,因为我们研究的所有因素(存在活跃/被动的皮肤,安全停止设置,机器人碰撞反应,冲击方向,当然还有速度)对撞击后的力进化产生了影响。
Soft electronic skins are one of the means to turn an industrial manipulator into a collaborative robot. For manipulators that are already fit for physical human-robot collaboration, soft skins can make them safer. In this work, we study the after impact behavior of two collaborative manipulators (UR10e and KUKA LBR iiwa) and one classical industrial manipulator (KUKA Cybertech), in presence or absence of an industrial protective skin (AIRSKIN). In addition, we isolate the effects of the passive padding and the active contribution of the sensor to robot reaction. We present a total of 2250 collision measurements and study the impact force, contact duration, clamping force, and impulse. The dataset is publicly available. We summarize our results as follows. For transient collisions, the passive skin properties lowered the impact forces by about 40 %. During quasi-static contact, the effect of skin covers -- active or passive -- cannot be isolated from the collision detection and reaction by the collaborative robots. Important effects of the stop categories triggered by the active protective skin were found. We systematically compare the different settings and the empirically established safe velocities with prescriptions by the ISO/TS 15066. In some cases, up to the quadruple of the ISO/TS 15066 prescribed velocity can comply with the impact force limits and thus be considered safe. We propose an extension of the formulas relating impact force and permissible velocity that take into account the stiffness and compressible thickness of the protective cover, leading to better predictions of the collision forces. At the same time, this work emphasizes the need for in situ measurements as all the factors we studied -- presence of active/passive skin, safety stop settings, robot collision reaction, impact direction, and, of course, velocity -- have effects on the force evolution after impact.