论文标题

多室人头建模:用GPU加速生成自适应四面体网状

Multi-compartment human head modeling: generating adaptive tetrahedral mesh with GPU acceleration

论文作者

Prieto, Fernando Galaz, Lahtinen, Joonas, Samavaki, Maryam, Pursiainen, Sampsa

论文摘要

本文介绍了一种高度适应性和自动化的方法,用于为给定的现实多隔间模型(通过磁共振成像(MRI)数据集获得的给定逼真的多室内模型生成有限元(Fe)离散化。我们旨在获得用于脑电图源定位的准确四面体FE网格。我们提出了模型表面分割的递归固体角度标记,然后使用一组平滑,通胀和优化例程对其进行调整,以进一步提高FE网格的质量。结果表明,我们的方法可以产生FE网格的精度大于1毫米,相对于它们的3D结构离散结果和脑电图源定位估计值很重要。可以为人头(包括复杂的深脑结构)实现Fe网眼。我们的算法已使用基于开放的MATLAB的Zeffiro接口工具箱实现,并具有有效的时间效率的并行计算系统。

This paper introduces a highly adaptive and automated approach for generating Finite Element (FE) discretization for a given realistic multi-compartment human head model obtained through magnetic resonance imaging (MRI) dataset. We aim at obtaining accurate tetrahedral FE meshes for electroencephalographic source localization. We present recursive solid angle labeling for the surface segmentation of the model and then adapt it with a set of smoothing, inflation, and optimization routines to further enhance the quality of the FE mesh. The results show that our methodology can produce FE mesh with an accuracy greater than 1 millimeter, significant with respect to both their 3D structure discretization outcome and electroencephalographic source localization estimates. FE meshes can be achieved for the human head including complex deep brain structures. Our algorithm has been implemented using the open Matlab-based Zeffiro Interface toolbox with it effective time-effective parallel computing system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源