论文标题

具有零充气的学习者模型的神经化学生群体中的公平能力估计

Equitable Ability Estimation in Neurodivergent Student Populations with Zero-Inflated Learner Models

论文作者

Twomey, Niall, McMullan, Sarah, Elhalal, Anat, Poyiadzi, Rafael, Vaquero, Luis

论文摘要

目前,教育数据挖掘社区缺乏确保神经差异(ND)学习者公平能力估算所需的许多工具。一方面,大多数学习者模型都容易估计和估计的能力,因为混淆的上下文无法承担责任(例如考虑阅读障碍和文本繁重的评估),另一方面,(如果有的话)现有数据集适用于在ND上下文中适用于评估模型和数据偏见。在本文中,我们试图建模上下文(交付和响应类型)与具有零膨胀的学习者模型的ND学生的性能之间的关系。这种方法有助于模拟几种预期的行为特征,从生成的数据集中提供了所有学生群体的公平能力估计,增加了可解释性信心,并可以大大提高ND学生的学习机会质量。我们的方法在实验中始终超过表现基线,也可以应用于许多其他学习者建模框架。

At present, the educational data mining community lacks many tools needed for ensuring equitable ability estimation for Neurodivergent (ND) learners. On one hand, most learner models are susceptible to under-estimating ND ability since confounding contexts cannot be held accountable (eg consider dyslexia and text-heavy assessments), and on the other, few (if any) existing datasets are suited for appraising model and data bias in ND contexts. In this paper we attempt to model the relationships between context (delivery and response types) and performance of ND students with zero-inflated learner models. This approach facilitates simulation of several expected ND behavioural traits, provides equitable ability estimates across all student groups from generated datasets, increases interpretability confidence, and can significantly increase the quality of learning opportunities for ND students. Our approach consistently out-performs baselines in our experiments and can also be applied to many other learner modelling frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源