论文标题

在理想的弗罗贝尼乌斯力量的希尔伯特 - 塞缪尔系数上

On the Hilbert-Samuel coefficients of Frobenius powers of an ideal

论文作者

Banerjee, Arindam, Goel, Kriti, Verma, J. K.

论文摘要

我们提供适当的条件,在该条件下,$ \ m athfrak {m} $的frobenius powers的渐近极限存在于Noetherian本地环$(R,\ Mathfrak {M Mathfrak {M})中,具有主要特征性$ p> 0的主要特征。 We also prove that for a face ring $R$ of a simplicial complex and an ideal $J$ generated by pure powers of the variables, the generalized Hilbert-Kunz function $\ell(R/(J^{[q]})^k)$ is a polynomial for all $q,k$ and also give an expression of the generalized Hilbert-Kunz multiplicity of powers of $J$ in terms of Hilbert-Samuel $ J的多样性。$我们通过对I. Smirnov提出的猜想进行反示例来结论,该猜想将理想的稳定性与理想的Frobenius功率的第一个希尔伯特系数的渐近极限联系起来。

We provide suitable conditions under which the asymptotic limit of the Hilbert-Samuel coefficients of the Frobenius powers of an $\mathfrak{m}$-primary ideal exists in a Noetherian local ring $(R,\mathfrak{m})$ with prime characteristic $p>0.$ This, in turn, gives an expression of the Hilbert-Kunz multiplicity of powers of the ideal. We also prove that for a face ring $R$ of a simplicial complex and an ideal $J$ generated by pure powers of the variables, the generalized Hilbert-Kunz function $\ell(R/(J^{[q]})^k)$ is a polynomial for all $q,k$ and also give an expression of the generalized Hilbert-Kunz multiplicity of powers of $J$ in terms of Hilbert-Samuel multiplicity of $J.$ We conclude by giving a counter-example to a conjecture proposed by I. Smirnov which connects the stability of an ideal with the asymptotic limit of the first Hilbert coefficient of the Frobenius power of the ideal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源