论文标题
在分数谐波函数上
On fractional harmonic functions
论文作者
论文摘要
我们在本文中关注的是研究与分数拉普拉斯的谐波功能的定性特性。首先,我们将整个空间中的多项式分类,以及在无穷大的原理价值意义上定义的分数laplacian的一半空间中。其次,我们研究了半空间中的分数谐波函数,边界和相关的分布身份都具有奇异性。
Our concern in this paper is to study the qualitative properties for harmonic functions related to the fractional Laplacian. Firstly we classify the polynomials in the whole space and in the half space for the fractional Laplacian defined in a principle value sense at infinity. Secondly, we study the fractional harmonic functions in half space with singularities on the boundary and the related distributional identities.