论文标题

通过新颖的人工智能方法对重型离子融合横截面数据进行建模

Modeling Heavy-Ion Fusion Cross Section Data via a Novel Artificial Intelligence Approach

论文作者

Dell'Aquila, Daniele, Gnoffo, Brunilde, Lombardo, Ivano, Porto, Francesco, Russo, Marco

论文摘要

我们对完整的融合横截面数据进行了全面的分析,目的是以完全数据驱动的方式得出一个模型,该模型适用于在上面的屏障能量下的光到中质核之间融合的综合横截面。为此,我们基于遗传编程和人工神经网络的杂交采用了一种新颖的人工智能方法,能够得出一个分析模型来描述实验数据。该方法能够首次在几个变量和相当大的核数据上进行全局搜索计算简单模型。派生的现象学配方可以用于重现融合横截面的趋势,以在大约从库仑屏障到多裂片现象的发作的能量域中的各种光到中间的质量碰撞系统。

We perform a comprehensive analysis of complete fusion cross section data with the aim to derive, in a completely data-driven way, a model suitable to predict the integrated cross section of the fusion between light to medium mass nuclei at above barrier energies. To this end, we adopted a novel artificial intelligence approach, based on a hybridization of genetic programming and artificial neural networks, capable to derive an analytical model for the description of experimental data. The approach enables, for the first time, to perform a global search for computationally simple models over several variables and a considerable body of nuclear data. The derived phenomenological formula can serve to reproduce the trend of fusion cross section for a large variety of light to intermediate mass collision systems in an energy domain ranging approximately from the Coulomb barrier to the onset of multi-fragmentation phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源