论文标题
旨在按大规模构造现实世界数据:从临床文本中提取关键肿瘤学信息的深度学习,并使用患者级别的监督
Towards Structuring Real-World Data at Scale: Deep Learning for Extracting Key Oncology Information from Clinical Text with Patient-Level Supervision
论文作者
论文摘要
目的:实际数据(RWD)中大多数详细的患者信息仅在自由文本临床文档中始终可用。手动策展很昂贵且耗时。因此,开发自然语言处理(NLP)用于构建RWD的方法对于扩展现实世界证据的生成至关重要。 材料和方法:传统的基于规则的系统容易受到临床文本中普遍的语言变化和歧义的影响,并且机器学习方法的先前应用通常需要句子级或报告级别的标记示例,这些示例很难大规模生产。我们建议从医疗注册表中利用患者级别的监督,这些医学登记处通常很容易获得并捕获关键的患者信息,以用于一般的RWD应用程序。为了打击缺乏句子级别或报告级注释,我们通过结合域特异性预处理,经常性神经网络和分层注意来探索先进的深度学习方法。 结果:我们对来自五个美国西部州的医疗保健系统的大型综合分娩网络(IDN)的135,107名患者进行了一项广泛的研究。我们的深度学习方法获得了对关键肿瘤属性的94-99%测试AUROC,并在单独的卫生系统和状态的持有数据上进行了可比的性能。 讨论和结论:消融结果表明,这些高级深度学习方法比先前的方法明显优势。错误分析表明,我们的NLP系统有时甚至会纠正注册商标签中的错误。我们还通过该医疗保健网络中超过120万癌症患者的辅助策展加速注册表策划和一般的RWD结构进行了初步研究。
Objective: The majority of detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents. Manual curation is expensive and time-consuming. Developing natural language processing (NLP) methods for structuring RWD is thus essential for scaling real-world evidence generation. Materials and Methods: Traditional rule-based systems are vulnerable to the prevalent linguistic variations and ambiguities in clinical text, and prior applications of machine-learning methods typically require sentence-level or report-level labeled examples that are hard to produce at scale. We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information, for general RWD applications. To combat the lack of sentence-level or report-level annotations, we explore advanced deep-learning methods by combining domain-specific pretraining, recurrent neural networks, and hierarchical attention. Results: We conduct an extensive study on 135,107 patients from the cancer registry of a large integrated delivery network (IDN) comprising healthcare systems in five western US states. Our deep learning methods attain test AUROC of 94-99% for key tumor attributes and comparable performance on held-out data from separate health systems and states. Discussion and Conclusion: Ablation results demonstrate clear superiority of these advanced deep-learning methods over prior approaches. Error analysis shows that our NLP system sometimes even corrects errors in registrar labels. We also conduct a preliminary investigation in accelerating registry curation and general RWD structuring via assisted curation for over 1.2 million cancer patients in this healthcare network.