论文标题

下一代IEEE 802.11 WLANS中联合的空间重用优化优化

Federated Spatial Reuse Optimization in Next-Generation Decentralized IEEE 802.11 WLANs

论文作者

Wilhelmi, Francesc, Hribar, Jernej, Yilmaz, Selim F., Ozfatura, Emre, Ozfatura, Kerem, Yildiz, Ozlem, Gündüz, Deniz, Chen, Hao, Ye, Xiaoying, You, Lizhao, Shao, Yulin, Dini, Paolo, Bellalta, Boris

论文摘要

随着无线标准的发展,引入了更复杂的功能,以解决吞吐量,延迟,安全性和效率方面的增加。为了释放此类新功能的潜力,目前正在利用人工智能(AI)和机器学习(ML)(ML)来从数据中得出模型和协议,而不是通过手工编程。在本文中,我们探讨了将ML应用于下一代无线局域网(WLAN)的可行性。更具体地说,我们专注于IEEE 802.11AX空间再利用(SR)问题,并通过联合学习(FL)模型来预测其性能。在这项工作中概述的FL解决方案集是2021年国际电信联盟(ITU)AI的5G挑战赛的一部分。

As wireless standards evolve, more complex functionalities are introduced to address the increasing requirements in terms of throughput, latency, security, and efficiency. To unleash the potential of such new features, artificial intelligence (AI) and machine learning (ML) are currently being exploited for deriving models and protocols from data, rather than by hand-programming. In this paper, we explore the feasibility of applying ML in next-generation wireless local area networks (WLANs). More specifically, we focus on the IEEE 802.11ax spatial reuse (SR) problem and predict its performance through federated learning (FL) models. The set of FL solutions overviewed in this work is part of the 2021 International Telecommunication Union (ITU) AI for 5G Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源