论文标题
刚性分析集的理性点:Pila-Wilkie型定理
Rational points of rigid-analytic sets: a Pila-Wilkie type theorem
论文作者
论文摘要
我们建立了pila-wilkie计数定理的刚性分析类似物,为$ \ mathbb {q} _p $ -Analytic Teb的跨性别点的理性点数量提供了亚物种上的上限,以及在$ \ Mathbb {f} $ {fixication集合中的理性功能数量对于$ \ mathbb {z} [[t]] $ - 分析集,我们可以统一地证明对每个非架构的本地字段的专业化。
We establish a rigid-analytic analog of the Pila-Wilkie counting theorem, giving sub-polynomial upper bounds for the number of rational points in the transcendental part of a $\mathbb{Q}_p$-analytic set, and the number of rational functions in a $\mathbb{F}_q((t))$-analytic set. For $\mathbb{Z}[[t]]$-analytic sets we prove such bounds uniformly for the specialization to every non-archimedean local field.