论文标题

在血膜和骨髓中自动检测急性临时性白血病,无注释深度学习

Automated Detection of Acute Promyelocytic Leukemia in Blood Films and Bone Marrow Aspirates with Annotation-free Deep Learning

论文作者

Manescu, Petru, Narayanan, Priya, Bendkowski, Christopher, Elmi, Muna, Claveau, Remy, Pawar, Vijay, Brown, Biobele J., Shaw, Mike, Rao, Anupama, Fernandez-Reyes, Delmiro

论文摘要

虽然血液膜和骨髓学检查血液膜的光学显微镜检查是建立急性白血病诊断的关键步骤,尤其是在可能无法获得其他诊断方式的低资源环境中,任务仍然是耗时的,并且对人类不一致而容易出现。这会产生影响,尤其是在需要紧急治疗的急性临床前白血病(APL)的情况下。将自动化的计算血病理学整合到临床工作流程中可以改善这些服务的吞吐量并减少认知人类错误。但是,部署这种系统的主要瓶颈是缺乏足够的细胞形态对象标记注释来训练深度学习模型。我们通过利用患者诊断标签来训练检测不同类型的急性白血病的弱监督模型来克服这一点。我们介绍了一种深度学习方法,用于白细胞识别(Millie)的多个实例学习,能够以最小的监督对血膜进行自动可靠分析。米莉(Millie)在没有对单个细胞进行分类的未经培训的情况下,在血膜中区分了急性淋巴细胞和骨髓细胞白血病。更重要的是,Millie检测到血膜中的APL(AUC 0.94 +/- 0.04)和骨髓抽吸物(AUC 0.99 +/- 0.01)。米莉(Millie)是一种可行的解决方案,可扩大需要评估血膜显微镜的临床途径的吞吐量。

While optical microscopy inspection of blood films and bone marrow aspirates by a hematologist is a crucial step in establishing diagnosis of acute leukemia, especially in low-resource settings where other diagnostic modalities might not be available, the task remains time-consuming and prone to human inconsistencies. This has an impact especially in cases of Acute Promyelocytic Leukemia (APL) that require urgent treatment. Integration of automated computational hematopathology into clinical workflows can improve the throughput of these services and reduce cognitive human error. However, a major bottleneck in deploying such systems is a lack of sufficient cell morphological object-labels annotations to train deep learning models. We overcome this by leveraging patient diagnostic labels to train weakly-supervised models that detect different types of acute leukemia. We introduce a deep learning approach, Multiple Instance Learning for Leukocyte Identification (MILLIE), able to perform automated reliable analysis of blood films with minimal supervision. Without being trained to classify individual cells, MILLIE differentiates between acute lymphoblastic and myeloblastic leukemia in blood films. More importantly, MILLIE detects APL in blood films (AUC 0.94+/-0.04) and in bone marrow aspirates (AUC 0.99+/-0.01). MILLIE is a viable solution to augment the throughput of clinical pathways that require assessment of blood film microscopy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源