论文标题

HP-Capsule:通过分层解析胶囊网络无监督的面部零件发现

HP-Capsule: Unsupervised Face Part Discovery by Hierarchical Parsing Capsule Network

论文作者

Yu, Chang, Zhu, Xiangyu, Zhang, Xiaomei, Wang, Zidu, Zhang, Zhaoxiang, Lei, Zhen

论文摘要

胶囊网络旨在通过一组零件及其关系呈现对象,从而洞悉视觉感知过程。尽管最近的作品表明胶囊网络在数字之类的简单对象上取得了成功,但尚未探索具有适用于胶囊的同源结构的人脸,但尚未探索。在本文中,我们为无监督的面部区域发现了一个分层解析胶囊网络(HP-Capsule)。当浏览大型面部图像没有标签时,网络首先用一组可解释的子部分胶囊编码经常观察到的模式。然后,通过基于变压器的解析模块(TPM)组装了子部分胶囊,以学习它们之间的组成关系。在训练过程中,由于面部层次结构逐渐建立和完善,因此胶囊以语义一致性适应面部零件。 HP-Capsule将胶囊网络的应用从数字扩展到人体面孔,并向前迈出一步,以展示神经网络如何在没有人类干预的情况下理解同源物体。此外,HP-Capsule提供了零件胶囊的覆盖区域无监督的面部分割结果,从而实现了定性和定量评估。 BP4D和多PIE数据集的实验显示了我们方法的有效性。

Capsule networks are designed to present the objects by a set of parts and their relationships, which provide an insight into the procedure of visual perception. Although recent works have shown the success of capsule networks on simple objects like digits, the human faces with homologous structures, which are suitable for capsules to describe, have not been explored. In this paper, we propose a Hierarchical Parsing Capsule Network (HP-Capsule) for unsupervised face subpart-part discovery. When browsing large-scale face images without labels, the network first encodes the frequently observed patterns with a set of explainable subpart capsules. Then, the subpart capsules are assembled into part-level capsules through a Transformer-based Parsing Module (TPM) to learn the compositional relations between them. During training, as the face hierarchy is progressively built and refined, the part capsules adaptively encode the face parts with semantic consistency. HP-Capsule extends the application of capsule networks from digits to human faces and takes a step forward to show how the neural networks understand homologous objects without human intervention. Besides, HP-Capsule gives unsupervised face segmentation results by the covered regions of part capsules, enabling qualitative and quantitative evaluation. Experiments on BP4D and Multi-PIE datasets show the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源