论文标题
三方纠缠和矩阵反转量子算法
Tripartite entanglement and matrix inversion quantum algorithm
论文作者
论文摘要
在Harrow-Hassidim-lloyd(HHL)算法中讨论了纠缠的作用。我们在HHL算法的每个步骤中计算所有三方纠缠。三方纠缠是在第一个量子相估计(QPE)步骤中生成的。但是,事实证明,除了极少数情况外,生成的纠缠量不是最大的。在第二个旋转步骤中,一些三方纠缠被歼灭。因此,净三方纠缠减少了。在最终的倒数QPE步骤中,矩阵倒置任务以纠缠的完全歼灭而完成。讨论了该结果的含义。
The role of entanglement is discussed in the Harrow-Hassidim-Lloyd (HHL) algorithm. We compute all tripartite entanglement at every steps of the HHL algorithm. The tripartite entanglement is generated in the first quantum phase estimation (QPE) step. However, it turns out that amount of the generated entanglement is not maximal except very rare cases. In the second rotation step some tripartite entanglement is annihilated. Thus, the net tripartite entanglement is diminished. At the final inverse-QPE step the matrix inversion task is completed at the price of complete annihilation of the entanglement. An implication of this result is discussed.