论文标题

使用新颖的标签策略进行结构化情感分析的有效令牌图建模

Effective Token Graph Modeling using a Novel Labeling Strategy for Structured Sentiment Analysis

论文作者

Shi, Wenxuan, Li, Fei, Li, Jingye, Fei, Hao, Ji, Donghong

论文摘要

结构化情感分析的最新模型将任务视为一个依赖性解析问题,这有一些局限性:(1)跨度预测和跨度关系预测的标签比例不平衡。 (2)在此任务中,情感元组成分的跨度可能非常大,这将进一步加剧不平衡问题。 (3)依赖图中的两个节点不能具有多个弧度,因此无法识别一些重叠的情感元素。在这项工作中,我们为这些问题提出了nichetargeting解决方案。首先,我们引入了一种新颖的标签策略,其中包含两组令牌对标签,即基本标签集和整个标签集。基本标签集由此任务的基本标签组成,该标签相对平衡并在预测层中应用。整个标签集包括丰富的标签,以帮助我们的模型捕获各种令牌关系,这些关系在隐藏层中应用,以轻轻影响我们的模型。此外,我们还提出了一个有效的模型,可以很好地与我们的标签策略进行协作,该策略配备了图形注意力网络,可迭代地完善令牌表示形式,以及自适应的多标签分类器,以动态预测令牌对之间的多重关系。我们用四种语言对5个基准数据集进行了广泛的实验。实验结果表明,我们的模型的表现优于先前的SOTA模型。

The state-of-the-art model for structured sentiment analysis casts the task as a dependency parsing problem, which has some limitations: (1) The label proportions for span prediction and span relation prediction are imbalanced. (2) The span lengths of sentiment tuple components may be very large in this task, which will further exacerbate the imbalance problem. (3) Two nodes in a dependency graph cannot have multiple arcs, therefore some overlapped sentiment tuples cannot be recognized. In this work, we propose nichetargeting solutions for these issues. First, we introduce a novel labeling strategy, which contains two sets of token pair labels, namely essential label set and whole label set. The essential label set consists of the basic labels for this task, which are relatively balanced and applied in the prediction layer. The whole label set includes rich labels to help our model capture various token relations, which are applied in the hidden layer to softly influence our model. Moreover, we also propose an effective model to well collaborate with our labeling strategy, which is equipped with the graph attention networks to iteratively refine token representations, and the adaptive multi-label classifier to dynamically predict multiple relations between token pairs. We perform extensive experiments on 5 benchmark datasets in four languages. Experimental results show that our model outperforms previous SOTA models by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源