论文标题

从功能一致性角度重新访问域广义立体声匹配网络

Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective

论文作者

Zhang, Jiawei, Wang, Xiang, Bai, Xiao, Wang, Chen, Huang, Lei, Chen, Yimin, Gu, Lin, Zhou, Jun, Harada, Tatsuya, Hancock, Edwin R.

论文摘要

尽管鉴于足够的培训数据,但最近的立体声匹配网络取得了令人印象深刻的性能,但它们却遭受了域的转变,并且概括为看不见的领域。我们认为,保持匹配像素之间的特征一致性是促进立体声匹配网络的概括能力的重要因素,而该网络尚未得到充分考虑。在这里,我们通过在整个角度提出一个简单的像素对比度学习来解决这个问题。立体声对比特征损失函数明确约束了匹配像素对的学习特征之间的一致性,这是相同3D点的观察。进一步引入了立体声选择性的美白损失,以更好地保留跨域的立体声特征一致性,从而使立体声视图特定样式信息的立体声功能脱离了立体声。违反直觉,在同一场景中的两个观点之间的特征一致性的概括转化为立体声匹配性能的概括,以表明域。我们的方法本质上是通用的,因为它可以很容易地嵌入现有的立体声网络中,并且不需要访问目标域中的样本。当对合成数据进行培训并推广到四个现实世界测试集时,我们的方法可在几个最先进的网络上实现出色的性能。

Despite recent stereo matching networks achieving impressive performance given sufficient training data, they suffer from domain shifts and generalize poorly to unseen domains. We argue that maintaining feature consistency between matching pixels is a vital factor for promoting the generalization capability of stereo matching networks, which has not been adequately considered. Here we address this issue by proposing a simple pixel-wise contrastive learning across the viewpoints. The stereo contrastive feature loss function explicitly constrains the consistency between learned features of matching pixel pairs which are observations of the same 3D points. A stereo selective whitening loss is further introduced to better preserve the stereo feature consistency across domains, which decorrelates stereo features from stereo viewpoint-specific style information. Counter-intuitively, the generalization of feature consistency between two viewpoints in the same scene translates to the generalization of stereo matching performance to unseen domains. Our method is generic in nature as it can be easily embedded into existing stereo networks and does not require access to the samples in the target domain. When trained on synthetic data and generalized to four real-world testing sets, our method achieves superior performance over several state-of-the-art networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源