论文标题

统一的多元高斯混合物,以进行有效的神经图像压缩

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

论文作者

Zhu, Xiaosu, Song, Jingkuan, Gao, Lianli, Zheng, Feng, Shen, Heng Tao

论文摘要

在差异图像压缩中,用先验和高度培训对潜在变量进行建模是一个必不可少的问题。正式地,如果先验和高度验证者精确地描述了潜在变量,则速率和失真之间的权衡得到很好的处理。当前的实践仅采用单变量先验并单独处理每个变量。但是,当观察矢量透视图中的潜在变量时,我们发现存在相互关系和相关性。这些发现揭示了视觉冗余,以提高速率延伸性能和并行处理能力,从而加快压缩的能力。这鼓励我们提出一个新颖的先验。具体而言,提出了多元高斯混合物的均值和协方差。然后,将新颖的概率矢量量化用于有效近似均值,并将其剩余的协方差进一步诱导到统一的混合物中,并通过级联估计而无需涉及上下文模型。此外,量化涉及的代码簿扩展到多编码本以降低复杂性,从而制定了有效的压缩过程。针对最先进的基准数据集进行了广泛的实验,这表明我们的模型具有更好的利率延伸性能和令人印象深刻的$ 3.18 \ times $压缩速度,使我们能够在实践中执行实时,高质量的变性图像压缩。我们的源代码可在\ url {https://github.com/xiaosu-zhu/mcquic}上公开获得。

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive $3.18\times$ compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at \url{https://github.com/xiaosu-zhu/McQuic}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源