论文标题

具有非线性卷积术语的高阶进化不平等

Higher order evolution inequalities with nonlinear convolution terms

论文作者

Filippucci, Roberta, Ghergu, Marius

论文摘要

我们关注的是对$$解决方案的存在和不存在的研究{case}&\ displayStyle \ frac {\ partial^k u} {\ partial t^k}+( - eartial t^k}+( - Δ) \ Mathbb r _+,\\ [0.1in]&\ displayStyle \ frac {\ partial^i u} {\ partial t^i}(x,0)= u_i(x,x)\,\,\,\,\,\,\ text {in} $ n,k,m \ geq 1 $是正整数,$ p,q> 0 $和$ u_i \ in l^1 _ {\ rm loc}(\ Mathbb {r}^n)$ for $ 0 \ leq i \ leq i \ leq k-1 $。我们假设$ k $是一个径向的正且连续的功能,它在无穷大街区降低。在上面的问题中,$ k \ ast | u |^p $表示$ k(| x |)$和$ | u |^p $之间的标准卷积操作。我们在$ N,M,K,P $和$ Q $上获得必要的条件,以便上述问题具有解决方案。我们的分析强调了$ \ displaystyle \ frac {\ partial^{k-1} u} {\ partial t^{k-1}} $的作用。

We are concerned with the study of existence and nonexistence of weak solutions to $$ \begin{cases} &\displaystyle \frac{\partial^k u}{\partial t^k}+(-Δ)^m u\geq (K\ast |u|^p)|u|^q \quad\mbox{ in } \mathbb R^N \times \mathbb R_+,\\[0.1in] &\displaystyle \frac{\partial^i u}{\partial t^i}(x,0) = u_i(x) \,\, \text{ in } \mathbb R^N,\, 0\leq i\leq k-1,\\ \end{cases} $$ where $N,k,m\geq 1$ are positive integers, $p,q>0$ and $u_i\in L^1_{\rm loc}(\mathbb{R}^N)$ for $0\leq i\leq k-1$. We assume that $K$ is a radial positive and continuous function which decreases in a neighbourhood of infinity. In the above problem, $K\ast |u|^p$ denotes the standard convolution operation between $K(|x|)$ and $|u|^p$. We obtain necessary conditions on $N,m,k,p$ and $q$ such that the above problem has solutions. Our analysis emphasizes the role played by the sign of $\displaystyle \frac{\partial^{k-1} u}{\partial t^{k-1}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源