论文标题
MTBF-33:美国33个县(1900-2015)的多个时间建筑足迹数据集
MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900-2015)
论文作者
论文摘要
尽管关于当代人类定居点的空间分布的大量数据,但稀缺的空间和时间粒度的人类定居点长期演变的历史数据很少,这限制了我们对建筑区域长期变化的定量理解。这是因为常用的映射方法(例如,图像分类)和合适的数据源(即航空成像,多光谱遥感数据,LIDAR)仅在最近几十年中可用。但是,有一些替代数据源,例如数字上可用的会计记录,其中包含相关信息,例如建筑年龄信息,允许对过去的建筑物分布进行大致的数字重建。我们从美国的行政机构中对开放且可公开的数据资源进行了无尽的搜索,并收集,集成和协调的会计包裹数据,税收评估数据以及为33个县的建筑构建足迹数据,无论在任何地方都可以构建足迹的几何图形和建设建筑年份信息。这项工作的结果是一个独特的数据集,我们称其为33个县(MTBF-33)的多阶段建筑足迹数据集。 MTBF-33包含超过620万个建筑足迹,包括其建设年份,可用于在1900年至2015年进行回顾性描述,以良好的空间和时间差异为数据验证,或用于数据验证的目的,或用于培训统计学习方法,旨在从远程感官数据中提取有关人类的Settems Setterming Messing数据,相似的数据,或类似的数据,或类似的数据,以培训人类的历史信息。 MTBF-33可从http://doi.org/10.17632/w33vbvjtdy获得。
Despite abundant data on the spatial distribution of contemporary human settlements, historical data on the long-term evolution of human settlements at fine spatial and temporal granularity is scarce, limiting our quantitative understanding of long-term changes of built-up areas. This is because commonly used mapping methods (e.g., image classification) and suitable data sources (i.e., aerial imagery, multi-spectral remote sensing data, LiDAR) have only been available in recent decades. However, there are alternative data sources such as cadastral records that are digitally available, containing relevant information such as building age information, allowing for an approximate, digital reconstruction of past building distributions. We conducted a non-exhaustive search of open and publicly available data resources from administrative institutions in the United States and gathered, integrated, and harmonized cadastral parcel data, tax assessment data, and building footprint data for 33 counties, wherever building footprint geometries and building construction year information was available. The result of this effort is a unique dataset which we call the Multi-Temporal Building Footprint Dataset for 33 U.S. Counties (MTBF-33). MTBF-33 contains over 6.2 million building footprints including their construction year, and can be used to derive retrospective depictions of built-up areas from 1900 to 2015, at fine spatial and temporal grain and can be used for data validation purposes, or to train statistical learning approaches aiming to extract historical information on human settlements from remote sensing data, historical maps, or similar data sources. MTBF-33 is available at http://doi.org/10.17632/w33vbvjtdy.