论文标题
关于最大暴露问题的参数化复杂性
On the Parameterized Complexity of the Maximum Exposure Problem
论文作者
论文摘要
我们研究了最大暴露问题(MEP)的参数化复杂性。给定一个范围空间(R,p),其中r是包含点集的范围的集合,而整数K则要求k范围删除时,k范围会导致最大暴露点的数量。当P中未包含P中的任何范围。在这封信中,我们在不同的参数方面给出了MEP的固定参数可处理结果。
We investigate the parameterized complexity of Maximum Exposure Problem (MEP). Given a range space (R, P) where R is the set of ranges containing a set P of points, and an integer k, MEP asks for k ranges which on removal results in the maximum number of exposed points. A point p is said to be exposed when p is not contained in any of the ranges in R. The problem is known to be NP-hard. In this letter, we give fixed-parameter tractable results of MEP with respect to different parameterizations.