论文标题

来自Boltzmann方程的多组分相对论耗散流体动力学

Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation

论文作者

Fotakis, Jan A., Molnár, Etele, Niemi, Harri, Greiner, Carsten, Rischke, Dirk H.

论文摘要

我们从Boltzmann方程中得出了多组分相对论的二阶耗散流体动力学,用于使用Moments of Moments的方法的$ n _ {\ text {spec}} $带有$ n_q $内在量子数字的粒子物种(例如,电荷,baryon and and anknementes)。我们获得了多个保守电荷的连续性方程以及单流体近似中总能量和动量的保护方程。这些$ 4+n_q $保护法律是通过在$(10+4N_Q)$ - 力矩近似中的二阶运动方程式来完成的。所得的流体动力方程正式与单组分系统的流体方程式相似,但具有不同的热力学关系和传输系数。我们得出所有运输系数的一般关系,并在超偏移限制的极限下明确计算它们。

We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann equations for a reactive mixture of $N_{\text{spec}}$ particle species with $N_q$ intrinsic quantum numbers (e.g. electric charge, baryon number, and strangeness) using the method of moments. We obtain the continuity equations for multiple conserved charges as well as the conservation equations for the total energy and momentum in the single-fluid approximation. These $4+N_q$ conservation laws are closed by deriving the second-order equations of motion for the dissipative quantities in the $(10+4N_q)$-moment approximation. The resulting fluid-dynamical equations are formally similar to those of a single-component system, but feature different thermodynamic relations and transport coefficients. We derive general relations for all transport coefficients and compute them explicitly in the ultrarelativistic limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源