论文标题

想法网络:通过深嵌入对齐方式动态3D点云插值

IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding Alignment

论文作者

Zeng, Yiming, Qian, Yue, Zhang, Qijian, Hou, Junhui, Yuan, Yixuan, He, Ying

论文摘要

本文研究了具有较大非刚性变形的时间插值动态3D点云的问题。我们将问题提出为估计点轨迹(即平滑曲线),并且是时间不规则性和采样不足是两个主要挑战的进一步原因。为了应对挑战,我们提出了Idea-Net,这是一个端到端的深度学习框架,它在明确学习的时间一致性的帮助下解散了问题。具体而言,我们提出了一个时间一致性学习模块,以使两个连续的点云框架对齐点,我们可以使用线性插值来获得粗糙的轨迹/内部框架之间。为了补偿轨迹的高阶非线性成分,我们应用对齐的特征嵌入式编码局部几何特性来回归点的增量,并将其与粗略估计结合使用。我们证明了我们的方法对各个点云序列的有效性,并且在数量和视觉上都对最新方法进行了巨大改进。我们的框架可以为3D运动数据获取带来好处。源代码可在https://github.com/zengyiming-eamon/idea-net.git上公开获得。

This paper investigates the problem of temporally interpolating dynamic 3D point clouds with large non-rigid deformation. We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves) and further reason that temporal irregularity and under-sampling are two major challenges. To tackle the challenges, we propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency. Specifically, we propose a temporal consistency learning module to align two consecutive point cloud frames point-wisely, based on which we can employ linear interpolation to obtain coarse trajectories/in-between frames. To compensate the high-order nonlinear components of trajectories, we apply aligned feature embeddings that encode local geometry properties to regress point-wise increments, which are combined with the coarse estimations. We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually. Our framework can bring benefits to 3D motion data acquisition. The source code is publicly available at https://github.com/ZENGYIMING-EAMON/IDEA-Net.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源