论文标题

使用点监督弱监督的显着对象检测

Weakly-Supervised Salient Object Detection Using Point Supervision

论文作者

Gao, Shuyong, Zhang, Wei, Wang, Yan, Guo, Qianyu, Zhang, Chenglong, He, Yangji, Zhang, Wenqiang

论文摘要

当前的最新显着性检测模型在很大程度上依赖于精确的像素注释的大型数据集,但是手动标记像素是时必的且劳动力密集的。有一些用于减轻该问题的弱监督方法,例如图像标签,边界框标签和涂鸦标签,而点标签仍未在该领域中探索。在本文中,我们提出了一种使用点监督的新型弱监督的显着对象检测方法。为了推断显着性图,我们首先设计了一种自适应掩盖洪水填充算法来生成伪标签。然后,我们开发了一个基于变压器的点保护显着性检测模型,以产生第一轮显着图。但是,由于标签的稀疏性,弱监督的模型倾向于退化为一般​​的前景检测模型。为了解决这个问题,我们提出了一种非征服方法(NSS)方法,以优化第一轮中产生的错误显着图,并利用它们进行第二轮训练。此外,我们通过重新标记DUTS数据集来构建一个新的监督数据集(P-DUTS)。在p-duts中,每个显着对象只有一个标记点​​。五个最大基准数据集的综合实验表明,我们的方法的表现优于先前的最先进方法,该方法接受了更强的监督,甚至超过了几种完全监督的最先进模型。该代码可在以下网址提供:https://github.com/shuyonggao/psod。

Current state-of-the-art saliency detection models rely heavily on large datasets of accurate pixel-wise annotations, but manually labeling pixels is time-consuming and labor-intensive. There are some weakly supervised methods developed for alleviating the problem, such as image label, bounding box label, and scribble label, while point label still has not been explored in this field. In this paper, we propose a novel weakly-supervised salient object detection method using point supervision. To infer the saliency map, we first design an adaptive masked flood filling algorithm to generate pseudo labels. Then we develop a transformer-based point-supervised saliency detection model to produce the first round of saliency maps. However, due to the sparseness of the label, the weakly supervised model tends to degenerate into a general foreground detection model. To address this issue, we propose a Non-Salient Suppression (NSS) method to optimize the erroneous saliency maps generated in the first round and leverage them for the second round of training. Moreover, we build a new point-supervised dataset (P-DUTS) by relabeling the DUTS dataset. In P-DUTS, there is only one labeled point for each salient object. Comprehensive experiments on five largest benchmark datasets demonstrate our method outperforms the previous state-of-the-art methods trained with the stronger supervision and even surpass several fully supervised state-of-the-art models. The code is available at: https://github.com/shuyonggao/PSOD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源