论文标题
斯坦福无人机数据集比我们想象的要复杂:对关键特征的分析
The Stanford Drone Dataset is More Complex than We Think: An Analysis of Key Characteristics
论文作者
论文摘要
存在几个数据集,其中包含带注释的个人轨迹的信息。此类数据集对于许多现实世界中的应用程序,包括轨迹预测和自动导航至关重要。目前正在使用的一个突出的数据集是Stanford Drone DataSet(SDD)。尽管它突出了,但围绕该数据集特征的讨论不足。我们演示了这种不足如何减少用户可用的信息并影响性能。我们的贡献包括SDD中关键特征的概述,使用信息理论措施和自定义指标清楚地可视化这些特征,实施PECNET和Y-NET轨迹预测模型,以证明特征对预测性能的影响,最后我们提供了SDD和sepromentsexection andsection andsection andsection date date Dalone(Ind and Ind date Dalone)。我们对SDD的关键特征的分析很重要,因为如果没有足够的有关可用数据集的信息,用户可以为方法选择最合适的数据集,以重现彼此的结果,并解释自己的结果。我们通过此分析进行的观察为计划使用SDD的人提供了容易访问且可解释的信息来源。我们的目的是提高应用于该数据集的方法的性能和可重复性,同时显然还详细介绍了新用户数据集的不太明显功能。
Several datasets exist which contain annotated information of individuals' trajectories. Such datasets are vital for many real-world applications, including trajectory prediction and autonomous navigation. One prominent dataset currently in use is the Stanford Drone Dataset (SDD). Despite its prominence, discussion surrounding the characteristics of this dataset is insufficient. We demonstrate how this insufficiency reduces the information available to users and can impact performance. Our contributions include the outlining of key characteristics in the SDD, employment of an information-theoretic measure and custom metric to clearly visualize those characteristics, the implementation of the PECNet and Y-Net trajectory prediction models to demonstrate the outlined characteristics' impact on predictive performance, and lastly we provide a comparison between the SDD and Intersection Drone (inD) Dataset. Our analysis of the SDD's key characteristics is important because without adequate information about available datasets a user's ability to select the most suitable dataset for their methods, to reproduce one another's results, and to interpret their own results are hindered. The observations we make through this analysis provide a readily accessible and interpretable source of information for those planning to use the SDD. Our intention is to increase the performance and reproducibility of methods applied to this dataset going forward, while also clearly detailing less obvious features of the dataset for new users.