论文标题
关于高维特征空间的监督功能选择
On Supervised Feature Selection from High Dimensional Feature Spaces
论文作者
论文摘要
机器学习对图像和视频数据的应用通常会产生高维特征空间。有效的功能选择技术确定了一个判别特征子空间,该子空间可降低计算和建模成本,而性能降解很少。提出了一种新颖的监督功能选择方法,用于这项工作的机器学习决策。结果测试分别称为分类和回归问题的判别特征测试(DFT)和相关特征测试(RFT)。 DFT和RFT程序进行了详细描述。此外,我们将DFT和RFT的有效性与几种经典特征选择方法进行了比较。为此,我们使用LENET-5为MNIST和Fashion-Mnist数据集获得的深度功能作为说明性示例。其他具有手工制作和基因表达功能的数据集也包括用于性能评估。实验结果表明,DFT和RFT可以在保持较高的决策绩效的同时,可以明确,稳健地选择较低的维度子空间。
The application of machine learning to image and video data often yields a high dimensional feature space. Effective feature selection techniques identify a discriminant feature subspace that lowers computational and modeling costs with little performance degradation. A novel supervised feature selection methodology is proposed for machine learning decisions in this work. The resulting tests are called the discriminant feature test (DFT) and the relevant feature test (RFT) for the classification and regression problems, respectively. The DFT and RFT procedures are described in detail. Furthermore, we compare the effectiveness of DFT and RFT with several classic feature selection methods. To this end, we use deep features obtained by LeNet-5 for MNIST and Fashion-MNIST datasets as illustrative examples. Other datasets with handcrafted and gene expressions features are also included for performance evaluation. It is shown by experimental results that DFT and RFT can select a lower dimensional feature subspace distinctly and robustly while maintaining high decision performance.