论文标题

4D-OR:用于域建模或域建模的语义场景图

4D-OR: Semantic Scene Graphs for OR Domain Modeling

论文作者

Özsoy, Ege, Örnek, Evin Pınar, Eck, Ulrich, Czempiel, Tobias, Tombari, Federico, Navab, Nassir

论文摘要

手术程序是在高度复杂的手术室(OR)中进行的,包括不同的参与者,设备和互动。迄今为止,只有受过医学训练的人类专家才能理解如此苛刻的环境中的所有链接和互动。本文旨在使社区更接近自动化,整体和语义的理解和建模或域名。为了实现这一目标,我们首次提议使用语义场景图(SSG)来描述和总结外科手术场景。场景图的节点代表房间中的不同演员和物体,例如医务人员,患者和医疗设备,而边缘是它们之间的关系。为了验证所提出的表示形式的可能性,我们创建了第一个公开可用的4D手术SSG数据集(4D-OR),其中包含十个模拟的总膝盖置换手术,并在一个现实或模拟中心中记录了六个RGB-D传感器。 4D-OR包括6734帧,并用SSG,人类和物体姿势以及临床角色进行了丰富的注释。我们提出了一个基于端到的神经网络的SSG生成管道,成功率为0.75宏F1,确实能够推断出OR中的语义推理。我们通过将其用于临床角色预测的问题,进一步证明场景图的表示能力,在该问题中我们达到了0.85宏F1。该代码和数据集将在接受后提供。

Surgical procedures are conducted in highly complex operating rooms (OR), comprising different actors, devices, and interactions. To date, only medically trained human experts are capable of understanding all the links and interactions in such a demanding environment. This paper aims to bring the community one step closer to automated, holistic and semantic understanding and modeling of OR domain. Towards this goal, for the first time, we propose using semantic scene graphs (SSG) to describe and summarize the surgical scene. The nodes of the scene graphs represent different actors and objects in the room, such as medical staff, patients, and medical equipment, whereas edges are the relationships between them. To validate the possibilities of the proposed representation, we create the first publicly available 4D surgical SSG dataset, 4D-OR, containing ten simulated total knee replacement surgeries recorded with six RGB-D sensors in a realistic OR simulation center. 4D-OR includes 6734 frames and is richly annotated with SSGs, human and object poses, and clinical roles. We propose an end-to-end neural network-based SSG generation pipeline, with a rate of success of 0.75 macro F1, indeed being able to infer semantic reasoning in the OR. We further demonstrate the representation power of our scene graphs by using it for the problem of clinical role prediction, where we achieve 0.85 macro F1. The code and dataset will be made available upon acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源