论文标题

凯门尼(Kemeny)的不可追踪随机步行

Kemeny's constant for non-backtracking random walks

论文作者

Breen, Jane, Faught, Nolan, Glover, Cory, Kempton, Mark, Knudson, Adam, Oveson, Alice

论文摘要

Kemeny的连接图$ G $的常数是随机步行到随机选择的顶点$ u $的预期时间,而不论初始顶点的选择如何。我们将Kemeny常数的定义扩展到非折线随机步行,并将其与凯门尼的常数进行比较,以进行简单的随机步行。我们探讨了几个图的这两个参数之间的关系,并为常规图和双重图提供了封闭形式的表达式。在几乎所有情况下,非背带变体都会产生较小的凯门尼常数。

Kemeny's constant for a connected graph $G$ is the expected time for a random walk to reach a randomly-chosen vertex $u$, regardless of the choice of the initial vertex. We extend the definition of Kemeny's constant to non-backtracking random walks and compare it to Kemeny's constant for simple random walks. We explore the relationship between these two parameters for several families of graphs and provide closed-form expressions for regular and biregular graphs. In nearly all cases, the non-backtracking variant yields the smaller Kemeny's constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源