论文标题

细长的身体理论旋转细丝

Slender body theories for rotating filaments

论文作者

Maxian, Ondrej, Donev, Aleksandar

论文摘要

细长的纤维在生物学,物理学和工程上无处不在,其中包括细菌鞭毛和细胞骨架纤维在内的重要例子。在这种情况下,细长的身体理论(SBT)在细长的$ε$中均具有渐近纤维的电阻,是分析和计算的有用工具。然而,考虑到扭曲和横截面旋转时出现困难:因为灯丝的角速度可能会根据所施加的扭矩的数量级而变化,所以渐变理论必须在各种角度速度的范围内为旋转动力学提供准确的结果。在本文中,我们首先调查了基于奇异性或全边界积分表示的现有SBT的挑战,这些挑战尤其表明它们未能始终如一地处理弯曲的细丝中的旋转转换耦合。然后,我们提供了一种替代方法,该方法通过rotne-prager-yamakawa正则化奇点的一维线积分近似三维动力学。虽然无法准确解决细丝附近的流场,但这种方法具有对称旋转翻译和翻译旋转耦合的宏大迁移率,使其适用于广泛的角速度。为了恢复三维灯丝几何形状的忠诚度,我们使用正则化奇异模型为一个简单的经验方程式提供了将沿灯丝中心线的平均力和扭矩与横截面的平移和旋转速度相关联的简单经验方程。该模型中的单个未知系数是根据旋转曲线的三维边界积分计算来估计的。

Slender fibers are ubiquitous in biology, physics, and engineering, with prominent examples including bacterial flagella and cytoskeletal fibers. In this setting, slender body theories (SBTs), which give the resistance on the fiber asymptotically in its slenderness $ε$, are useful tools for both analysis and computations. However, a difficulty arises when accounting for twist and cross-sectional rotation: because the angular velocity of a filament can vary depending on the order of magnitude of the applied torque, asymptotic theories must give accurate results for rotational dynamics over a range of angular velocities. In this paper, we first survey the challenges in applying existing SBTs, which are based on either singularity or full boundary integral representations, to rotating filaments, showing in particular that they fail to consistently treat rotation-translation coupling in curved filaments. We then provide an alternative approach which approximates the three-dimensional dynamics via a one-dimensional line integral of Rotne-Prager-Yamakawa regularized singularities. While unable to accurately resolve the flow field near the filament, this approach gives a grand mobility with symmetric rotation-translation and translation-rotation coupling, making it applicable to a broad range of angular velocities. To restore fidelity to the three-dimensional filament geometry, we use our regularized singularity model to inform a simple empirical equation which relates the mean force and torque along the filament centerline to the translational and rotational velocity of the cross section. The single unknown coefficient in the model is estimated numerically from three-dimensional boundary integral calculations on a rotating, curved filament.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源