论文标题
适应性的几次跨域抗腐烂的自适应变压器
Adaptive Transformers for Robust Few-shot Cross-domain Face Anti-spoofing
论文作者
论文摘要
虽然最近的面部抗烟方法在域内设置下表现良好,但有效的方法需要说明在具有不同传感器的复杂场景中获取的图像的外观变化,以进行不同的性能。在本文中,我们介绍了适应性跨域抗固定剂的自适应视觉变压器(VIT)。具体而言,我们采用VIT作为骨干,以利用其强度来解释像素之间的远程依赖性。我们进一步介绍了VIT中的集合适配器模块和特征转换层,以适应不同的域,以便使用一些样品进行稳健性能。几个基准数据集的实验表明,提出的模型可以使用一些样品来实现良好的和竞争性能,以实现跨域抗疾病的最新方法。
While recent face anti-spoofing methods perform well under the intra-domain setups, an effective approach needs to account for much larger appearance variations of images acquired in complex scenes with different sensors for robust performance. In this paper, we present adaptive vision transformers (ViT) for robust cross-domain face antispoofing. Specifically, we adopt ViT as a backbone to exploit its strength to account for long-range dependencies among pixels. We further introduce the ensemble adapters module and feature-wise transformation layers in the ViT to adapt to different domains for robust performance with a few samples. Experiments on several benchmark datasets show that the proposed models achieve both robust and competitive performance against the state-of-the-art methods for cross-domain face anti-spoofing using a few samples.