论文标题

计算语言$β$基于量子逻辑非分布性的正数晶格

Computational Language $ β$ based on Orthomodular Lattices with the Non-distributivity of Quantum Logic

论文作者

Otsuka, Kazuki

论文摘要

有人认为,可以推广通用计算系统中长期进化史的变换过程(生成规则)。明确的功能类$ω$定义如下:“其特征向量(或特征值)的操作员的组件中有一个不合理的数字,构成了一类具有准周期结构,$ω$的功能,$ω$,$ω$ $ω$显示了长长的进化历史的证据。”为了通过检查进行生活活动或发达智能的智力输出的物理系统来证明这一定理,通用机器C型和计算语言$β$的基本框架作为通用计算方法的模型提出,这些模型允许转换过程(生成规则)具有从生成产生产生的深度算法复杂性。 C和$β$对事件状态系统进行了大规模平行的计算,该系统由根据子系统之间的相关性表示的命题元素组成的指数组合。计算语言的逻辑结构依赖于希尔伯特空间或正交模块化晶格中的非分布性,从而可以同时操纵和扣除同时命题。在这种逻辑的本地结构中,暗示某些后果的命题并不是唯一的。

It is argued that transformation processes (generation rules) showing evidence of a long evolutionary history in universal computing systems can be generalized. The explicit function class $ Ω$ is defined as follows: "Operators whose eigenvectors (or eigenvalues) have an irrational number in their components constitute a class of functions with quasi-periodic structure, $ Ω$, and the class $ Ω$ shows evidence of a long evolutionary history." In order to empirically prove this theorem by examining physical systems carrying out life activities or intellectual outputs of developed intelligence, the basic framework of the universal machine model C and the computational language $ β$ is presented as a model for general computational methods, which allow transformation processes (generation rules) with deep algorithmic complexity to be derived from generation results. C and $ β$ perform massively parallel computations on event-state systems consisting of exponential combinations of propositional elements expressed in terms of correlations between subsystems. The logical structure of the computational language relies on a non-distributivity in Hilbert spaces or orthogonal modular lattices, allowing for the manipulation and deduction of simultaneous propositions. In this logical local structure, the propositions implying certain consequences are not uniquely determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源