论文标题
语音私人2022挑战评估计划
The VoicePrivacy 2022 Challenge Evaluation Plan
论文作者
论文摘要
对于新参与者 - 执行摘要:(1)任务是为语音数据开发语音匿名系统,该系统隐藏了说话者的语音身份,同时保护语言内容,副语言属性,清晰度和自然性。 (2)除3种不同的基线匿名系统,评估脚本和指标外,还提供培训,开发和评估数据集。参与者应用其开发的匿名系统,运行评估脚本并向组织者提交客观评估结果和匿名语音数据。 (3)结果将在与Interspeech 2022结合的研讨会上展示,并邀请所有参与者介绍其挑战系统并提交其他研讨会论文。 对于熟悉语音挑战的读者 - 更改W.R.T. 2020年:(1)以自动扬声器验证(ASV)系统的形式进行了更强的半信息攻击模型,该系统接受了匿名(每位)语音数据的培训。 (2)互补指标包括等于误差率(EER)作为隐私指标,单词错误率(WER)作为主要实用程序度量,以及音调相关性和语音独特性作为二级实用性度量标准。 (3)基于一组最低目标隐私要求的新排名策略。
For new participants - Executive summary: (1) The task is to develop a voice anonymization system for speech data which conceals the speaker's voice identity while protecting linguistic content, paralinguistic attributes, intelligibility and naturalness. (2) Training, development and evaluation datasets are provided in addition to 3 different baseline anonymization systems, evaluation scripts, and metrics. Participants apply their developed anonymization systems, run evaluation scripts and submit objective evaluation results and anonymized speech data to the organizers. (3) Results will be presented at a workshop held in conjunction with INTERSPEECH 2022 to which all participants are invited to present their challenge systems and to submit additional workshop papers. For readers familiar with the VoicePrivacy Challenge - Changes w.r.t. 2020: (1) A stronger, semi-informed attack model in the form of an automatic speaker verification (ASV) system trained on anonymized (per-utterance) speech data. (2) Complementary metrics comprising the equal error rate (EER) as a privacy metric, the word error rate (WER) as a primary utility metric, and the pitch correlation and gain of voice distinctiveness as secondary utility metrics. (3) A new ranking policy based upon a set of minimum target privacy requirements.