论文标题
庞加莱的不平等现象
Poincaré inequalities on graphs
论文作者
论文摘要
我们证明了本地$ l^p $-poincaré不平等,$ p \ in [1,\ infty] $,在无限图中的准集合中,赋予了一系列本地加倍措施,以及全球$ l^p $ -POUINCINCARRE,用于在树木上进行连接的流动措施。我们还讨论了结果的最佳性。
We prove local $L^p$-Poincaré inequalities, $ p\in[1,\infty]$, on quasiconvex sets in infinite graphs endowed with a family of locally doubling measures, and global $L^p$-Poincaré inequalities on connected sets for flow measures on trees. We also discuss the optimality of our results.