论文标题
Transsleep:过渡感知到基于注意力的深度神经网络,用于睡眠阶段
TransSleep: Transitioning-aware Attention-based Deep Neural Network for Sleep Staging
论文作者
论文摘要
睡眠分期对于睡眠评估至关重要,并且在健康指标中起着至关重要的作用。许多最近的研究设计了各种机器学习以及用于睡眠阶段的深度学习体系结构。但是,两个关键挑战阻碍了这些架构的实际使用:有效地捕获睡眠信号中的显着波形,并正确地对过渡时期的混乱阶段进行了正确分类。在这项研究中,我们提出了一种新型的深层神经网络结构Transsleep,该结构捕获了独特的局部时间模式,并使用两个辅助任务区分了令人困惑的阶段。特别是,TransSleep采用了基于注意力的多尺度特征提取器模块来捕获显着波形。一个具有新颖的辅助任务,时期级分类的舞台连接估计器模块,以估算识别令人困惑的阶段的置信度得分;以及一个带有另一个新颖的辅助任务的上下文编码器模块,即阶段转变检测,以表示相邻时代之间的上下文关系。结果表明,Transsleep在自动睡眠分期实现了有希望的表现。 Transsleep的有效性通过其在两个公开可用的数据集(Sleep-edff and Mass)上的最新性能来证明。此外,我们进行了消融以从不同的角度分析结果。根据我们的整体结果,我们认为Transsleep具有巨大的潜力,可以为基于深度学习的睡眠分期提供新的见解。
Sleep staging is essential for sleep assessment and plays a vital role as a health indicator. Many recent studies have devised various machine learning as well as deep learning architectures for sleep staging. However, two key challenges hinder the practical use of these architectures: effectively capturing salient waveforms in sleep signals and correctly classifying confusing stages in transitioning epochs. In this study, we propose a novel deep neural network structure, TransSleep, that captures distinctive local temporal patterns and distinguishes confusing stages using two auxiliary tasks. In particular, TransSleep adopts an attention-based multi-scale feature extractor module to capture salient waveforms; a stage-confusion estimator module with a novel auxiliary task, epoch-level stage classification, to estimate confidence scores for identifying confusing stages; and a context encoder module with the other novel auxiliary task, stage-transition detection, to represent contextual relationships across neighboring epochs. Results show that TransSleep achieves promising performance in automatic sleep staging. The validity of TransSleep is demonstrated by its state-of-the-art performance on two publicly available datasets, Sleep-EDF and MASS. Furthermore, we performed ablations to analyze our results from different perspectives. Based on our overall results, we believe that TransSleep has immense potential to provide new insights into deep learning-based sleep staging.