论文标题
回收显着性:有节奏的精确调制的动作和感知
Reclaiming saliency: rhythmic precision-modulated action and perception
论文作者
论文摘要
人工智能和机器人技术中视觉关注的计算模型受到显着图的概念的启发。这些模型解释了(当前)视觉信息及其估计原因之间的共同信息。但是,他们没有考虑感知和行动之间的循环因果关系。换句话说,考虑到当前的信念,他们不考虑下一个在哪里进行采样。在这里,我们将显着性作为一个积极的推理过程,依赖于两个基本原则:不确定性最小化和节奏计划。为此,我们将注意力和显着性区别开来。简而言之,我们将注意力与精确控制相关联,即,给定对感觉数据的信念可以更新信念的信心,而显着性则与不确定性最小化,从而承销了未来的感官数据的选择。使用此功能,我们提出了一个基于节奏的精确调节的新注意事项,并讨论了其在机器人技术中的潜力,提供了数值实验,以展示对状态和噪声估计,系统识别和操作选择信息路径计划的精确调制的优势。
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words, they do not consider where to sample next, given current beliefs. Here, we reclaim salience as an active inference process that relies on two basic principles: uncertainty minimisation and rhythmic scheduling. For this, we make a distinction between attention and salience. Briefly, we associate attention with precision control, i.e., the confidence with which beliefs can be updated given sampled sensory data, and salience with uncertainty minimisation that underwrites the selection of future sensory data. Using this, we propose a new account of attention based on rhythmic precision-modulation and discuss its potential in robotics, providing numerical experiments that showcase advantages of precision-modulation for state and noise estimation, system identification and action selection for informative path planning.