论文标题

CORSUSVIS:数字乐谱收集的视觉分析

CorpusVis: Visual Analysis of Digital Sheet Music Collections

论文作者

Miller, Matthias, Rauscher, Julius, Keim, Daniel A., El-Assady, Mennatallah

论文摘要

由于基础功能,结构和上下文信息的幅度和复杂性,手动调查音乐收集对音乐分析师的挑战。但是,应用复杂的算法方法将需要分析师不一定具有的高级技术专长。弥合了这个差距,我们贡献了一个交互式视觉工作空间的colpusvis,可扩展和多方面的分析。我们提出的视觉分析仪表板提供了对计算方法的访问,从而在相同的数据上生成了不同的观点。拟议的应用使用元数据,包括作曲家,类型,时代和低级特征,例如音调,旋律和节奏。为了评估我们的方法,我们与九名参与者进行了一对分析研究。定性结果表明,Corpusvis支持用户进行探索性和确认性分析,从而导致他们进行新的见解和发现。此外,根据三个示例性工作流程,我们演示了如何将方法应用于不同任务,例如探索音乐功能或比较作曲家。

Manually investigating sheet music collections is challenging for music analysts due to the magnitude and complexity of underlying features, structures, and contextual information. However, applying sophisticated algorithmic methods would require advanced technical expertise that analysts do not necessarily have. Bridging this gap, we contribute CorpusVis, an interactive visual workspace, enabling scalable and multi-faceted analysis. Our proposed visual analytics dashboard provides access to computational methods, generating varying perspectives on the same data. The proposed application uses metadata including composers, type, epoch, and low-level features, such as pitch, melody, and rhythm. To evaluate our approach, we conducted a pair analytics study with nine participants. The qualitative results show that CorpusVis supports users in performing exploratory and confirmatory analysis, leading them to new insights and findings. In addition, based on three exemplary workflows, we demonstrate how to apply our approach to different tasks, such as exploring musical features or comparing composers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源