论文标题

ThingTalk:针对任务对话的可扩展的,可执行的表示语言

ThingTalk: An Extensible, Executable Representation Language for Task-Oriented Dialogues

论文作者

Lam, Monica S., Campagna, Giovanni, Moradshahi, Mehrad, Semnani, Sina J., Xu, Silei

论文摘要

面向任务的对话代理依靠语义解析器将自然语言转化为形式表示。在本文中,我们提出了ThingTalk正式表示形式的设计和理由,以及设计如何改善交易型任务导向代理的开发。 ThingTalk建立在四个核心原则上:(1)直接表示用户请求作为可执行语句,涵盖了代理的所有功能,(2)正式和简洁地表示对话以支持准确的上下文语义解析,(3)标准化类型和互动,以最大程度地在代理之间进行重复使用,并允许多个独立的助手在多个独立的求职者之间,以适合多个独立的人。 ThingTalk是作为Genie框架的一部分开发的,该框架允许开发人员在数据库和API下快速构建交易代理。 我们将ThingTalk与现有表示形式进行比较:Smcalflow,SGD,Treedst。与其他人相比,ThingTalk设计既更一般,更具成​​本效益。使用ThingTalk和相关工具在Multiwoz基准测试上进行了评估,可以产生79%转弯的最新状态。

Task-oriented conversational agents rely on semantic parsers to translate natural language to formal representations. In this paper, we propose the design and rationale of the ThingTalk formal representation, and how the design improves the development of transactional task-oriented agents. ThingTalk is built on four core principles: (1) representing user requests directly as executable statements, covering all the functionality of the agent, (2) representing dialogues formally and succinctly to support accurate contextual semantic parsing, (3) standardizing types and interfaces to maximize reuse between agents, and (4) allowing multiple, independently-developed agents to be composed in a single virtual assistant. ThingTalk is developed as part of the Genie Framework that allows developers to quickly build transactional agents given a database and APIs. We compare ThingTalk to existing representations: SMCalFlow, SGD, TreeDST. Compared to the others, the ThingTalk design is both more general and more cost-effective. Evaluated on the MultiWOZ benchmark, using ThingTalk and associated tools yields a new state of the art accuracy of 79% turn-by-turn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源