论文标题

自我监督的视频中心化变压器,用于视频脸聚类

Self-supervised Video-centralised Transformer for Video Face Clustering

论文作者

Wang, Yujiang, Dong, Mingzhi, Shen, Jie, Luo, Yiming, Lin, Yiming, Ma, Pingchuan, Petridis, Stavros, Pantic, Maja

论文摘要

本文提出了一种使用视频中心化的变压器在视频中面部聚类的新方法。以前的作品经常采用对比学习来学习框架级表示,并使用平均池来汇总沿时间维度的特征。这种方法可能无法完全捕获复杂的视频动态。此外,尽管在基于视频的对比学习方面取得了最新进展,但很少有人试图学习一个自我监视的聚类友好的面部表现,从而使视频面部聚集任务受益。为了克服这些局限性,我们的方法采用了变压器来直接学习视频级表示,可以更好地反映视频中面部的时间变化属性,而我们还建议一个以视频为中心的自我监督框架来训练变压器模型。我们还调查了以自我为中心视频的面部聚类,这是一个快速出现的领域,尚未在与面部聚类有关的作品中进行研究。为此,我们介绍并发布了名为EasyCom-Clustering的第一个大规模的自我中心视频群集群数据集。我们对广泛使用的大爆炸理论(BBT)数据集和新的easycom群集数据集进行了评估。结果表明,我们以视频为中心的变压器的性能超过了两个基准测试的所有先前最新方法,对面部视频表现出了自我牵手的理解。

This paper presents a novel method for face clustering in videos using a video-centralised transformer. Previous works often employed contrastive learning to learn frame-level representation and used average pooling to aggregate the features along the temporal dimension. This approach may not fully capture the complicated video dynamics. In addition, despite the recent progress in video-based contrastive learning, few have attempted to learn a self-supervised clustering-friendly face representation that benefits the video face clustering task. To overcome these limitations, our method employs a transformer to directly learn video-level representations that can better reflect the temporally-varying property of faces in videos, while we also propose a video-centralised self-supervised framework to train the transformer model. We also investigate face clustering in egocentric videos, a fast-emerging field that has not been studied yet in works related to face clustering. To this end, we present and release the first large-scale egocentric video face clustering dataset named EasyCom-Clustering. We evaluate our proposed method on both the widely used Big Bang Theory (BBT) dataset and the new EasyCom-Clustering dataset. Results show the performance of our video-centralised transformer has surpassed all previous state-of-the-art methods on both benchmarks, exhibiting a self-attentive understanding of face videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源