论文标题

范德华材料中的核自旋极化和控制

Nuclear spin polarization and control in a van der Waals material

论文作者

Gao, Xingyu, Vaidya, Sumukh, Li, Kejun, Ju, Peng, Jiang, Boyang, Xu, Zhujing, Allcca, Andres E. Llacsahuanga, Shen, Kunhong, Taniguchi, Takashi, Watanabe, Kenji, Bhave, Sunil A., Chen, Yong P., Ping, Yuan, Li, Tongcang

论文摘要

范德华分层材料是材料研究的重点,因为它们支持强大的量子效应,并且可以轻松形成异质结构。范德华材料中的电子旋转在许多最近的突破中起着至关重要的作用,包括拓扑绝缘子,二维(2D)磁铁和自旋液体。但是,范德华材料中的核自旋仍然是未开发的量子资源。在这里,我们报告了在室温下对范德华材料中核自旋的光学极化和相干控制的首次演示。我们使用带负电荷的硼空位($ v_b^ - $)固定硼中的旋转缺陷来偏振附近的氮核自旋。值得注意的是,我们观察到$ v_b^ - $缺陷在激发态水平的抗跨加IS的狂犬病频率比孤立的核的大350倍,并证明了对核旋转的快速相干控制。我们还检测到强型电子介导的核核自旋耦合,该偶联比直接核自旋偶性偶联大5个数量级,从而实现了多Qubit的操作。三角晶格中的氮核自旋将适用于大规模量子模拟。我们的工作为量子信息科学和技术的范德华材料中的核自旋打开了一个新的边界。

Van der Waals layered materials are a focus of materials research as they support strong quantum effects and can easily form heterostructures. Electron spins in van der Waals materials played crucial roles in many recent breakthroughs, including topological insulators, two-dimensional (2D) magnets, and spin liquids. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report the first demonstration of optical polarization and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively-charged boron vacancy ($V_B^-$) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. Remarkably, we observe the Rabi frequency of nuclear spins at the excited-state level anti-crossing of $V_B^-$ defects to be 350 times larger than that of an isolated nucleus, and demonstrate fast coherent control of nuclear spins. We also detect strong electron-mediated nuclear-nuclear spin coupling that is 5 orders of magnitude larger than the direct nuclear spin dipolar coupling, enabling multi-qubit operations. Nitrogen nuclear spins in a triangle lattice will be suitable for large-scale quantum simulation. Our work opens a new frontier with nuclear spins in van der Waals materials for quantum information science and technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源